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• Semiconductor character, with energy gap 
depending on their width and shape. 
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Simulation characteristics:

- 1280 atoms;

- double-ζ (9280 orbitals);

- vdW (optB88);

- real space grid cutoff: 350 Ry;

- forces < 5 meV/Å;

- interlayer distance: 3.34 Å.
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Inter-ribbon transmission
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Electrostatic potential at V = 0
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Direct transmission at V = 0
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Inter-ribbon transmission at V = 0
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Inter-ribbon current
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Bond currents for 90° at 0.5 V
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Bond currents for 60° at 0.5 V
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Conclusions

• Application of TranSIESTA for N=4 arbitrarily distributed electrodes at 

finite bias;

• Transmission strongly depends on the stacking;

• For a 60° rotation angle one finds a higher inter-layer transmission;

• In our calculations we observe a small gating effect due to the top ribbon.
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65 Å

Simulation characteristics:

 756 atoms;

 double-ζ (5040 orbitals);

 vdW (optB88);

 real space grid cutoff: 250 Ry;

 forces < 10 meV/Å.

TranSIESTA
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Periodic calculation
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Electrostatic potential
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DOS projected on each ribbon “row”
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• Semiconductor electrodes: use with caution!

• Coulomb cutoff in TranSIESTA for low dimensionality systems;

• Transport simulations can reproduce observed quantum well states

and explain their mechanism.

Conclusions
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Thank you!


