

Aspects of Graphene Nanoribbons Devices Simulations

Pedro Brandimarte

June 13, 2016

Graphene

• High mobility \longrightarrow 10⁵ cm²V⁻¹s⁻¹

K. Novoselov *et al*. *Science* **306**, 666-669 (2004).

• High mobility \longrightarrow 10⁵ cm²V⁻¹s⁻¹

• Gap absence:

A. Castro Neto *et al*. *Rev. of Mod. Phys.* **81**, 109-162 (2009).

Graphene Nanoribbons (GNRs)

• Bottom-up fabrication of both AGNR and ZGNR by on-surface reaction of molecular precursors.

J. Cai *et al*. *Nature* **466**, 470 (2010).

L. Talirz, P. Ruffieux, and R. Fasel. *Advanced Materials* (2016).

Graphene Nanoribbons (GNRs)

• Bottom-up fabrication of both AGNR and ZGNR by on-surface reaction of molecular precursors.

J. Cai *et al*. *Nature* **466**, 470 (2010).

L. Talirz, P. Ruffieux, and R. Fasel. *Advanced Materials* (2016).

Semiconductor character, with energy gap depending on their width and shape.

Y.-W. Son *et al*. *Phys. Rev. Lett.* **97**, 216803 (2006). Y.-C. Chen *et al*. *ACS Nano* **7**, 6123 (2013). A. Kimouche *et al*. *Nature Communications* **6**, 10177 (2015).

Universidad Euskal Herriko Unibertsitate

Electron Transport Simulations of 4-Terminal Crossed Graphene Nanoribbons Devices

Pedro Brandimarte, Nick R. Papior, Mads Engelund, Aran Garcia-Lekue, Thomas Frederiksen, and Daniel Sánchez-Portal

June 13, 2016

Pedro Brandimarte

M. Masum Habib and Roger K. Lake. *Phys. Rev. B* **86**, 045418 (2012).

Pedro Brandimarte

Crossed 14-AGNR

Non-Equilibrium Green's Function (NEGF)

TranSIESTA

J. M. Soler *et al*. *J. Phys. Condens. Matter.* **14**, 2745 (2002). Mads Brandbyge *et al*. *Phys. Rev. B* **65**, 165401 (2002).

Pedro Brandimarte

Crossed 14-AGNR

TranSIESTA

J. M. Soler *et al*. *J. Phys. Condens. Matter.* **14**, 2745 (2002). Mads Brandbyge *et al*. *Phys. Rev. B* **65**, 165401 (2002). Nick R. Papior. *In preparation* (2016).

Pedro Brandimarte

Crossed 14-AGNR

Pedro Brandimarte

Crossed 14-AGNR

Pedro Brandimarte

Crossed 14-AGNR

Simulation characteristics:

- 1280 atoms;
- double-ζ (9280 orbitals);
- vdW (optB88);
- real space grid cutoff: 350 Ry;

3.34

- forces < 5 meV/ \AA ;
- interlayer distance: 3.34 Å.

Pedro Brandimarte

Direct transmission

Pedro Brandimarte

Direct transmission

Pedro Brandimarte

Direct transmission

Pedro Brandimarte

Inter-ribbon transmission

Pedro Brandimarte

Electrostatic potential at 0.05 V

 0.4 80 0.3 70 0.2 60 0.1 50 $\left| \begin{array}{c} 2 \\ 5 \\ 40 \end{array} \right|$ 0.0 -0.1 30 -0.2 $20\,$ -0.3 $10\,$ -0.4 $0\frac{1}{2}$ 10 $20\,$ 80 $30\,$ 40 $50\,$ 70 60 $x(A)$

 U_{H} (V=0.05V) (eV)

Pedro Brandimarte

Electrostatic potential at 0.05 V

Pedro Brandimarte

Electrostatic potential at 0.05 V

Pedro Brandimarte

Electrostatic potential at 0.05 V

Pedro Brandimarte

Electrostatic potential at 0.05 V

Pedro Brandimarte

Electrostatic potential at 0.05 V

Pedro Brandimarte

Electrostatic potential at 0.05 V

Pedro Brandimarte

Electrostatic potential at 0.05 V

Pedro Brandimarte

Electrostatic potential at 0.05 V

Pedro Brandimarte

Electrostatic potential at 0.05 V

Pedro Brandimarte

Rotated crossbar

Pedro Brandimarte

Electrostatic potential at V = 0

Pedro Brandimarte

Direct transmission at V = 0

Pedro Brandimarte

Direct transmission at V = 0

Pedro Brandimarte

Inter-ribbon transmission at V = 0

Pedro Brandimarte

Inter-ribbon current

Pedro Brandimarte

Inter-ribbon current

Pedro Brandimarte

Bond currents for 90° at 0.5 V

Pedro Brandimarte

Intralayer bias

Pedro Brandimarte

Intralayer bias

Pedro Brandimarte

Intralayer bias

Pedro Brandimarte

Conclusions

- Application of TranSIESTA for **N=4 arbitrarily distributed** electrodes at finite bias;
- Transmission **strongly depends on the stacking**;
- For a 60° rotation angle one finds a **higher inter-layer transmission**;
- In our calculations we observe a **small gating effect** due to the top ribbon.

nan ta zabal zazi

1-D Quantum Well States on Doped Graphene Nanoribbons Revealed by Transport Simulations

Pedro Brandimarte, Aran Garcia-Lekue, Eduard Carbonell-Sanromà, Martina Corso, Richard Balog, Shigeki Kawaii, Shohei Saito, Shinichiro Osumi, Shigehiro Yamaguchi, Jose I. Pascual, and Daniel Sánchez-Portal

June 13, 2016

Pedro Brandimarte

Hybrid 7-AGNR

□ Borinated sections Pristine sections

S. Kawai *et al*. *Nature Communications* **6**, 8098 (2015). R. R. Cloke *et al*. *J. A. Chem. Soc.* **137**, 8872 (2015).

Pedro Brandimarte

 2.5 nm

 2.5 nm

 2.5 nm

Pedro Brandimarte

 $x(nm)$

Pedro Brandimarte

TranSIESTA

Pedro Brandimarte

TranSIESTA

65 Å **TranSIESTA 1-D Quantum Well States on Doped Graphene Nanoribbons Revealed by Transport Simulations Pedro Brandimarte**

Simulation characteristics:

- 756 atoms;
- double-ζ (5040 orbitals);
- vdW (optB88);
- real space grid cutoff: 250 Ry;
- forces < 10 meV/Å.

Pedro Brandimarte

Pedro Brandimarte

Pedro Brandimarte

Periodic calculation

Pedro Brandimarte

Periodic calculation

Pedro Brandimarte

Pedro Brandimarte

Pedro Brandimarte

Pedro Brandimarte

Electrostatic potential

Pedro Brandimarte

Coulomb cutoff

$$
\widetilde{v}(\mathbf{G}) = \int \int \int_{space} \widetilde{v}(r)e^{-i\mathbf{G}\cdot\mathbf{r}}d^{3}\mathbf{r} = \int \int \int_{D} v(r)e^{-i\mathbf{G}\cdot\mathbf{r}}d^{3}\mathbf{r}
$$

Pedro Brandimarte

Coulomb cutoff

$$
\widetilde{v}(\mathbf{G}) = \int \int \int_{space} \widetilde{v}(r)e^{-i\mathbf{G}\cdot\mathbf{r}}d^{3}\mathbf{r} = \int \int \int_{D} v(r)e^{-i\mathbf{G}\cdot\mathbf{r}}d^{3}\mathbf{r}
$$

• **O-D:**
$$
\tilde{v}^{0D}(G) = \frac{4\pi}{G^2} [1 - \cos(GR)]
$$

Pedro Brandimarte

Coulomb cutoff

$$
\widetilde{v}(\mathbf{G}) = \int \int \int_{space} \widetilde{v}(r)e^{-i\mathbf{G}\cdot\mathbf{r}}d^{3}\mathbf{r} = \int \int \int_{D} v(r)e^{-i\mathbf{G}\cdot\mathbf{r}}d^{3}\mathbf{r}
$$

$$
\bullet \quad \text{O-D:} \quad \widetilde{v}^{\text{OD}}(G) = \frac{4\pi}{G^2} [1 - \cos(GR)]
$$

• 1-D:
$$
\tilde{v}^{1D}(G_x, G_{\perp}) = \frac{4\pi}{G^2} [1 + G_{\perp} R J_1(G_{\perp} R) K_0(G_x R) - G_x R J_0(G_{\perp} R) K_1(G_x R)]
$$

Pedro Brandimarte

Coulomb cutoff

$$
\widetilde{v}(\mathbf{G}) = \int \int \int_{space} \widetilde{v}(r)e^{-i\mathbf{G}\cdot\mathbf{r}}d^{3}\mathbf{r} = \int \int \int_{D} v(r)e^{-i\mathbf{G}\cdot\mathbf{r}}d^{3}\mathbf{r}
$$

$$
\bullet \quad \text{O-D:} \quad \widetilde{v}^{\text{OD}}(G) = \frac{4\pi}{G^2} [1 - \cos(GR)]
$$

• 1-D:
$$
\tilde{v}^{1D}(G_x, G_{\perp}) = \frac{4\pi}{G^2} [1 + G_{\perp} R J_1(G_{\perp} R) K_0(G_x R) - G_x R J_0(G_{\perp} R) K_1(G_x R)]
$$

$$
\approx -4\pi \int_0^R r J_0(G_\perp r) \ln(r) dr + 4\pi R \ln(2h) \frac{J_1(G_\perp R)}{G_\perp}
$$

Pedro Brandimarte

Coulomb cutoff

$$
\widetilde{v}(\mathbf{G}) = \int \int \int_{space} \widetilde{v}(r)e^{-i\mathbf{G}\cdot\mathbf{r}}d^{3}\mathbf{r} = \int \int \int_{D} v(r)e^{-i\mathbf{G}\cdot\mathbf{r}}d^{3}\mathbf{r}
$$

$$
\bullet \quad \text{O-D:} \quad \widetilde{v}^{\text{OD}}(G) = \frac{4\pi}{G^2} [1 - \cos(GR)]
$$

• 1-D:
$$
\tilde{v}^{1D}(G_x, G_{\perp}) = \frac{4\pi}{G^2} [1 + G_{\perp} R J_1(G_{\perp} R) K_0(G_x R) - G_x R J_0(G_{\perp} R) K_1(G_x R)]
$$

$$
\approx -4\pi \int_0^R r J_0(G_\perp r) \ln(r) dr + 4\pi R \ln(2k) \frac{J_1(G_\perp R)}{G_\perp} = 0
$$

Pedro Brandimarte

Electrostatic potential

Pedro Brandimarte

DOS projected on each ribbon "row"

Pedro Brandimarte

DOS projected on each ribbon "row"

Pedro Brandimarte

DOS projected on each ribbon "row"

Pedro Brandimarte

Zero bias transmission

Pedro Brandimarte

Eigenchannels

M. Paulsson and M. Brandbyge. *Phys. Rev. B* **76**, 115117 (2007).

Pedro Brandimarte

Eigenchannels

M. Paulsson and M. Brandbyge. *Phys. Rev. B* **76**, 115117 (2007).

Pedro Brandimarte

Conclusions

- Semiconductor electrodes: **use with caution!**
- **Coulomb cutoff in TranSIESTA** for low dimensionality systems;
- Transport simulations can **reproduce** observed quantum well states and **explain** their mechanism.

eman ta zabal zazu

Thank you!

