

Electron quantum optics with graphene-based nanostructures

Pedro Brandimarte

Donostia International Physics Center San Sebastián, Spain

May 2018

M. Kolmer, P. Brandimarte et al. In preparation!

P. Brandimarte et al. J. Chem. Phys. 146, 092318 (2017).

E. Cabonell-Sanromà, P. Brandimarte et al. Nano Letters 17, 50 (2017).

L. Pedroza, P. Brandimarte et al. Chemical Science 9, 62 (2018).

. Pedroza, P. Brandimarte et al. Chemical Science 9, 62 (2018)

. Pedroza, P. Brandimarte et al. Chemical Science 9, 62 (2018)

. Pedroza, P. Brandimarte et al. Chemical Science 9, 62 (2018).

. Pedroza, P. Brandimarte et al. Chemical Science 9, 62 (2018).

M. Kolmer, P. Brandimarte et al. In preparation!

P. Brandimarte et al. J. Chem. Phys. 146, 092318 (2017).

E. Cabonell-Sanromà, P. Brandimarte et al. Nano Letters 17, 50 (2017).

L. Pedroza, P. Brandimarte et al. Chemical Science 9, 62 (2018).

P. Brandimarte et al. J. Chem. Phys. 146, 092318 (2017) L. Pedroza, P. Brandimarte et al. Chemical Science 9, 62 (2018).

Ę,J

L. Pedroza, P. Brandimarte et al. Chemical Science 9, 62 (2018).

L. Pedroza, P. Brandimarte et al. Chemical Science **9**, 62 (2018).

M. Kolmer, P. Brandimarte et al. In preparation!

P. Brandimarte et al. J. Chem. Phys. 146, 092318 (2017).

E. Cabonell-Sanromà, P. Brandimarte et al. Nano Letters 17, 50 (2017).

L. Pedroza, P. Brandimarte et al. Chemical Science 9, 62 (2018).

[3.34 Å

L. Pedroza, P. Brandimarte et al. Chemical Science 9, 62 (2018).

Donostia - San Sebastián

Good for tourism...

Donostia - San Sebastián

Good for tourism... and for SCIENCE!!!

Acknowledgments

CFM/DIPC

Daniel Sánchez-Portal

THUMAS FIEUENKSEI	Thomas	Frederikser
-------------------	--------	-------------

Aran Garcia-Lekue

Mads Engelund

Sofia Sanz

Geza Giedke

DTU (Denmark)

Nick Papior

CIC nanoGune/CFM

Jose Ignacio Pascual

Eduard Carbonel-Sanromà

Martina Corso

Outline

- Motivation
- 1-Dimension quantum well states on doped GNRs
- Tunable electronic beam splitter with crossed GNRs
- Summary

Electron quantum optics with graphene-based nanostructures Motivation	Pedro Brandimarte (brandimarte@pm.me)
What is GNR?	

Electron quantum optics with graphene-based nanostructures Motivation

What is GNR?

What is GNR?

A. Geim and K. Novoselov. Nature Mat. 6(3), 183 (2007).

What is GNR?

Graphene NanoRibbon (GNR)

What is GNR?

Graphene NanoRibbon (GNR)

Electron quantum optics with graphene-based nanostructures Motivation Pedro Brandimarte (brandimarte@pm.me)

What is GNR?

Armchair Graphene NanoRibbon (a) 2.5 (b) 2.5 ight-binding DA AGNR 2.0 2.0 =3p+1 3p+2 $\Delta_{a}(eV)$ $\Delta_{a}(eV)$ 1.5 1.5 Δ_{3n+} 1.0 1.0 0.5 0.5 0.0 0.0 20 30 10 40 50 20 30 0 0 10 40 50 w_a(Å) w_a(Å) E-E_F(eV) (O) 2 1 N_a=13 N_a=12 $N_a = 14$ 0 -1 -2 -3 0 $k(1/d_a)$ π 0 k(1/d_a) $\pi \ 0$ $k(1/d_a)$ π

Y.-W. Son et al. Phys. Rev. Lett. 97, 216803 (2006).

GNR on-surface synthesis

Į.,

GNR on-surface synthesis

Chemical functionalization of GNR

2CN-7-AGNR 1CN-7-AGNR

1.2 V

Chemical functionalization of GNR

2CN-7-AGNR 1CN-7-AGNR

E. Carbonell-Sanromà, ..., P. Brandimarte et al. ACS Nano 11(7), 7355 (2017).

Chemical functionalization of GNR

DBBA

7-AGNR

2B-DBBA

P

B

S. Kawai et al. Nature Comm. 6, 8098 (2015). R. R. Cloke et al. J. A. Chem. Soc. 137, 8872 (2015).

Br

Br

Hybrid 7-AGNR

3:1

Hybrid 7-AGNR

Borylated sectionsPristine sections

Hybrid 7-AGNR

Hybrid 7-AGNR

Borylated sectionsPristine sections

Pedro Brandimarte (brandimarte@pm.me)

Hybrid 7-AGNR

Pedro Brandimarte (brandimarte@pm.me)

Hybrid 7-AGNR

Pedro Brandimarte (brandimarte@pm.me)

Transport simulation setup

electrode

electrode

Density-Functional Theory (DFT) + Non-Equilibrium Green's Function (NEGF)

TranSIESTA

J. M. Soler et al. J. Phys. Condens. Matter. 14, 2745 (2002).
M. Brandbyge et al. Phys. Rev. B 65, 165401 (2002).
N. Papior et al. Comp. Phys. Commun. 212, 8 (2017).

Transport simulation setup

TranSIESTA

J. M. Soler et al. J. Phys. Condens. Matter. 14, 2745 (2002).
M. Brandbyge et al. Phys. Rev. B 65, 165401 (2002).
N. Papior et al. Comp. Phys. Commun. 212, 8 (2017).

Simulation characteristics:

- 756 atoms;
- double-ζ (5040 orbitals);
- vdW (optB88);
- real space grid cutoff: 250 Ry;
- forces < 10 meV/Å.</p>

Pedro Brandimarte (brandimarte@pm.me)

Mulliken population

Pedro Brandimarte (brandimarte@pm.me)

Mulliken population

Periodic calculation

E. Carbonell-Sanromà, P. Brandimarte et al. Nano Letters 17, 50 (2017).

Electron quantum optics with graphene-based nanostructures 1-Dimension quantum well states on doped GNRs

Periodic calculation

Electron quantum optics with graphene-based nanostructures 1-Dimension quantum well states on doped GNRs

Periodic calculation

Electrostatic potential

E. Carbonell-Sanromà, P. Brandimarte et al. Nano Letters 17, 50 (2017).

DOS projected on each GNR "row"

DOS projected on each GNR "row"

DOS projected on each GNR "row"

Scattering states

Scattering states

Pedro Brandimarte (brandimarte@pm.me)

Scattering states

E. Carbonell-Sanromà, P. Brandimarte et al. Nano Letters 17, 50 (2017).

Band selectivity

E. Carbonell-Sanromà, P. Brandimarte *et al. Nano Letters* **17**, 50 (2017).

Band selectivity

Pedro Brandimarte (brandimarte@pm.me)

Fully borylated GNR

S. Kawai *et al. Nature Comm.* **6**, 8098 (2015). R. R. Cloke *et al. J. A. Chem. Soc.* 137, 8872 (2015).

Fully borylated GNR

Fully borylated GNR

Fully borylated GNR

Pedro Brandimarte (brandimarte@pm.me)

Conclusions

- Transport simulations can **reproduce** observed quantum well states
- The theoretical analysis **reveals a band selectivity** mechanism
- Fabry-Pérot analogue for electrons

Crossed 14-AGNR device

M. Masum Habib and R. Lake. Phys. Rev. B 86, 045418 (2012).

Crossed 14-AGNR device

M. Masum Habib and R. Lake. Phys. Rev. B 86, 045418 (2012).

Pedro Brandimarte (brandimarte@pm.me)

Transport simulation setup

Density-Functional Theory (DFT) + Non-Equilibrium Green's Function (NEGF)

TranSIESTA

J. M. Soler et al. J. Phys. Condens. Matter. 14, 2745 (2002).
M. Brandbyge et al. Phys. Rev. B 65, 165401 (2002).
N. Papior et al. Comp. Phys. Commun. 212, 8 (2017).

Pedro Brandimarte (brandimarte@pm.me)

Transport simulation setup

TranSIESTA

Transport simulation setup

TranSIESTA

Simulation characteristics:

1280 atoms;

 μ_{4}

- double-ζ (9280 orbitals);
- vdW (optB88);
- real space grid cutoff: 350 Ry;
- forces < 5 meV/Å.</p>

Pristine 14-AGNR

Pedro Brandimarte (brandimarte@pm.me)

P. Brandimarte et al. J. Chem. Phys. 146, 092318 (2017).

Pristine 14-AGNR

1

P. Brandimarte et al. J. Chem. Phys. 146, 092318 (2017).

Pristine 14-AGNR

1

P. Brandimarte et al. J. Chem. Phys. 146, 092318 (2017).

Pristine 14-AGNR

1

P. Brandimarte et al. J. Chem. Phys. 146, 092318 (2017).
Pristine 14-AGNR

Pristine 14-AGNR

Pedro Brandimarte (brandimarte@pm.me)

Crossed 14-AGNR

interlayer separation of 3.34 Å

Pedro Brandimarte (brandimarte@pm.me)

Pedro Brandimarte (brandimarte@pm.me)

Pedro Brandimarte (brandimarte@pm.me)

Pedro Brandimarte (brandimarte@pm.me)

Pedro Brandimarte (brandimarte@pm.me)

Inter-GNR transmission at V=0

Pedro Brandimarte (brandimarte@pm.me)

Pedro Brandimarte (brandimarte@pm.me)

Electrostatic potential at V=0.5V

Electrostatic potential profile at V=0.5V

U_H(V=0.5V)-U_H(V=0.0V) (eV)

Electrostatic potential profile at V=0.5V

U_H(V=0.5V)-U_H(V=0.0V) (eV)

Electrostatic potential profile at V=0.5V

U_H(V=0.5V)-U_H(V=0.0V) (eV)

Electrostatic potential profile at V=0.5V

U_H(V=0.5V)-U_H(V=0.0V) (eV)

Electrostatic potential profile at V=0.5V

U_H(V=0.5V)-U_H(V=0.0V) (eV)

Electrostatic potential profile at V=0.5V

U_H(V=0.5V)-U_H(V=0.0V) (eV)

Electrostatic potential profile at V=0.5V

U_H(V=0.5V)-U_H(V=0.0V) (eV)

Electrostatic potential profile at V=0.5V

U_H(V=0.5V)-U_H(V=0.0V) (eV)

Pedro Brandimarte (brandimarte@pm.me)

1

1

1

1

I₁₂

I₁₃

I_14

l₂₃

I_24

3

4

4

3

- 33

4

3

>2

2

2

2

P. Brandimarte et al. J. Chem. Phys. 146, 092318 (2017).

60°

Electron quantum optics with graphene-based nanostructures Tunable electronic beam splitter with crossed GNRs

Pedro Brandimarte (brandimarte@pm.me)

Finite bias effects

Finite bias effects

I_14

Pedro Brandimarte (brandimarte@pm.me)

P. Brandimarte et al. J. Chem. Phys. 146, 092318 (2017).

Finite bias effects

M. Masum Habib and R. Lake. Phys. Rev. B 86, 045418 (2012).

P. Brandimarte et al. J. Chem. Phys. 146, 092318 (2017).

Pedro Brandimarte (brandimarte@pm.me)

Electron quantum optics with graphene-based nanostructures Tunable electronic beam splitter with crossed GNRs

Bond currents

Bond currents

Pedro Brandimarte (brandimarte@pm.me)

Bond currents

Pedro Brandimarte (brandimarte@pm.me)

Bond currents

Pedro Brandimarte (brandimarte@pm.me)

(images: Wikipedia Commons)

Pedro Brandimarte (brandimarte@pm.me)

A tunable electron beam splitter at θ =60°

Pedro Brandimarte (brandimarte@pm.me)

A tunable electron beam splitter at θ =60°

Pedro Brandimarte (brandimarte@pm.me)

A tunable electron beam splitter at θ=60°

Electron quantum optics with graphene-based nanostructures Tunable electronic beam splitter with crossed GNRs

Role of GNR width

P. Brandimarte et al. J. Chem. Phys. 146, 092318 (2017).

Pedro Brandimarte (brandimarte@pm.me)

Simple picture for the angle effect

Tunneling probability in perturbation theory:

$$T_{
m inter} \propto \left| \langle \Psi_{ ilde{f k}_{\parallel}, ilde{f k}_{\perp}} | \Psi_{f k_{\parallel}, f k_{\perp}}
ight|^2$$

J. Bardeen. Phys. Rev. Lett. 6, 57 (1961).
Pedro Brandimarte (brandimarte@pm.me)

Simple picture for the angle effect

Tunneling probability in perturbation theory:

$$T_{
m inter} \propto \left| \langle \Psi_{ ilde{\mathbf{k}}_{\parallel}, ilde{\mathbf{k}}_{\perp}} | \Psi_{\mathbf{k}_{\parallel}, \mathbf{k}_{\perp}}
angle
ight|^2$$

J. Bardeen. Phys. Rev. Lett. 6, 57 (1961).

$$\langle \mathbf{r} | \Psi_{\mathbf{k}_{\parallel}, \mathbf{k}_{\perp}} \rangle = \begin{cases} e^{-i\mathbf{k}_{\parallel} \cdot \mathbf{r}} \left(e^{-i\mathbf{k}_{\perp} \cdot \mathbf{r}} - e^{i\mathbf{k}_{\perp} \cdot \mathbf{r}} \right), \ \mathbf{r} \in \mathrm{GNR} \\ 0, \ \mathrm{elsewhere} \end{cases}$$

Pedro Brandimarte (brandimarte@pm.me)

Simple picture for the angle effect

Tunneling probability in perturbation theory:

$$T_{
m inter} \propto \left| \langle \Psi_{ ilde{\mathbf{k}}_{\parallel}, ilde{\mathbf{k}}_{\perp}} | \Psi_{\mathbf{k}_{\parallel}, \mathbf{k}_{\perp}}
angle
ight|^2$$

J. Bardeen. Phys. Rev. Lett. 6, 57 (1961).

$$\mathbf{k}_{\parallel} + \mathbf{k}_{\perp} = \tilde{\mathbf{k}}_{\parallel} \pm \tilde{\mathbf{k}}_{\perp} \longrightarrow \cos \theta^* = \frac{k_{\parallel} \tilde{k}_{\parallel} - k_{\perp} \tilde{k}_{\perp}}{k_{\parallel}^2 + k_{\perp}^2}$$

Pedro Brandimarte (brandimarte@pm.me)

Simple picture for the angle effect

Tunneling probability in perturbation theory:

$$T_{
m inter} \propto \left| \langle \Psi_{ ilde{\mathbf{k}}_{\parallel}, ilde{\mathbf{k}}_{\perp}} | \Psi_{\mathbf{k}_{\parallel}, \mathbf{k}_{\perp}}
angle
ight|^2$$

J. Bardeen. Phys. Rev. Lett. 6, 57 (1961).

Pedro Brandimarte (brandimarte@pm.me)

Simple picture for the angle effect

Tunneling probability in perturbation theory:

$$T_{
m inter} \propto \left| \langle \Psi_{ ilde{\mathbf{k}}_{\parallel}, ilde{\mathbf{k}}_{\perp}} | \Psi_{\mathbf{k}_{\parallel}, \mathbf{k}_{\perp}}
angle
ight|^2$$

J. Bardeen. Phys. Rev. Lett. 6, 57 (1961).

Pedro Brandimarte (brandimarte@pm.me)

Simple picture for the angle effect

Pedro Brandimarte (brandimarte@pm.me)

Simple picture for the angle effect

Pedro Brandimarte (brandimarte@pm.me)

Simple picture for the angle effect

Pedro Brandimarte (brandimarte@pm.me)

Does this applies to Zigzag GNRs?

Pedro Brandimarte (brandimarte@pm.me)

Does this applies to Zigzag GNRs?

In agreement with results based on a π tight-binding model by L. Lima *et al*. *J. Phys.: Cond. Matter* **28**, 505303 (2016).

P. Brandimarte et al. J. Chem. Phys. 146, 092318 (2017).

Now a homework!

Pedro Brandimarte (brandimarte@pm.me)

Now a homework!

In agreement with results from A. Botello-Méndez *et al*. *Nano Lett.* **11**, 3058 (2011).

P. Brandimarte et al. J. Chem. Phys. 146, 092318 (2017).

Pedro Brandimarte (brandimarte@pm.me)

Tight-binding model

Can we capture the beam splitting effect with two parameters?

$$H = t_0 \sum_{n.n} (c_i^{\dagger} c_j + h.c.) + t_{\perp} \sum_{n.n} (c_{H,i}^{\dagger} c_{V,j} + h.c.)$$

Tight-binding model

Can we capture the beam splitting effect with two parameters?

$$H = t_0 \sum_{n.n} (c_i^{\dagger} c_j + h.c.) + t_{\perp} \sum_{n.n} (c_{H,i}^{\dagger} c_{V,j} + h.c.)$$

sisl

build passing	DOI 10.528	1/zenodo.59	7181 Li	icense	LGPL V3	chat on	gitter	
pypi package	0.9.2 Anac	onda Cloud 0.	9.2 CO	decov	85% c	odacy A	Donate	PavPal

The API documentation can be found here.

The sisl toolbox provides a simple API for manipulating, constructing and creating tight-binding matrices in a standard and uniform way.

Secondly, it provides easy interfaces for creating and calculating band-structures of simple tight-binding models as well as interfacing to more advanced DFT utilities.

sisl may also be used together with the ASE environment.

sisl provides an interface to TBtrans and enables the calculation of transport using the non-equilibrium Green function method and easily allows calculation of tight-binding systems of millions of atoms.

Nick Papior, https://github.com/zerothi/sisl.

Tight-binding model

Two AA stackings:

asymmetric 3 1 4 Pedro Brandimarte (brandimarte@pm.me)

symmetric

Tight-binding model

symmetric

Conclusions

- Crossing GNRs can act as electron beam splitter
 - **50-50 splitting** of incident waves to outgoing terminals

- **X** negligible back-reflection
- **X** tunable devices (pressure/translation)
- × similar effects with other GNRs

What's next?

An electronic Mach–Zehnder interferometer

Yang Ji, Yunchul Chung, D. Sprinzak, M. Heiblum, D. Mahalu & Hadas Shtrikman

J. Yang et al. Nature 422, 415 (2003).

The Fermionic Hanbury Brown and Twiss Experiment

M. Henny,¹ S. Oberholzer,¹ C. Strunk,¹ T. Heinzel,² K. Ensslin,² M. Holland,³ C. Schönenberger^{1*}

A Hanbury Brown and Twiss experiment for a beam of electrons has been realized in a two-dimensional electron gas in the quantum Hall regime. A metallic split gate serves as a tunable beam splitter to partition the incident beam into transmitted and reflected partial beams. In the nonequilibrium case the fluctuations in the partial beams are shown to be fully anticorrelated,

lude each other. In equilibrium, the cross-

M. Henny et al. Science 284, 296 (1999).

