eman ta zabal zazu

Universidad Euskal Herriko del País Vasco Unibertsitatea

Deciphering the electronic structure of 5-armchair graphene nanoribbons and its topological end-states

<u>Pedro Brandimarte</u>,*¹ James Lawrence,*^{1,2} Alejandro Berdonces-Layunta,^{1,2} brandimarte@pm.me

Mohammed S. G. Mohammed,^{1,2} Dimas G. de Oteyza,^{1,2,3} and Daniel Sánchez-Portal^{1,2}

¹ Donostia International Physics Center (DIPC), Spain ² Centro de Física de Materiales (CFM), Spain ³ IKERBASQUE, Basque Foundation for Science, Spain

PREVIOUS SYNTHESIS AND CHARACTERIZATION

Previous 5-AGNRs metal-catalysed on-surface synthesis:

TOPOLOGICAL ORIGIN OF THE END-STATES

Topology of 1D system is characterized by the Zak phase [5]:

END-STATES EVOLUTION WITH GNR LENGTH

12-UC 5-AGNR:

PREDICTION FROM THEORY

There
$$\Psi_{n,k} = \frac{1}{\sqrt{N}} u_{n,k}$$
 is the bloch function.

In terms of the \mathbb{Z}_2 invariant:

 $(-1)^{\mathbb{Z}_2} = -ie^i\varphi$ $\mathbb{Z}_2=1$ (non-trivial)

 $\mathbb{Z}_2 = 0$ (trivial)

In the interface between a topological non-trivial and a trivial insulator (e.g. vacuum) an odd number of localized states should emerge in the band gap.

Experimental evidence of different C-C bond lengths on 5-AGNR:

Simple π tight-binding model with varying hopping constants t_{nar} and t_{perp} leads to different \mathbb{Z}_2 values:

constant height dl/dV images on Au(111)

GW formalism with semi-empirical substrate screening [3] provides a good agreement with with experimental band gap values for larger widths:

OUR RESULTS [4]

5-AGNR synthesis on Au(111):

DFT calculations varying the unit cell lattice:

Wavefunctions for $\mathbf{a} = 4.33$ Å and 4.60 Å appear exchanged at Γ for either topological class:

MAGNETIC NATURE OF THE END-STATES

Transport across the 5-AGNR in a two-terminal setup:

• 5-AGNRs on Au(111) display a semiconducting gap of 0.85 eV

• Anisotropic electrostatic potential from partial charges of the H atoms along the edges favors the opening of the gap towards the topological non-trivial band structure

• 5-AGNRs present topological in-gap states

• In-gap states undergo a transition from a closed-shell form to singly occupied spin-split states after reaching the length of 16-UC

30 unit-cell (UC) long 5-AGNR: DFT versus constant height dl/dV

Bond length relaxations does not explain why the 5-AGNRs open a band gap that relaxes towards the non-trivial regime.

Our proposal: band gap opening driven by the anisotropic electrostatic profile caused by the positive partial charge on the H atoms at the GNR edges.

- Upon lifting the GNRs the end-states become filled as the electrostatic influence of the high work function substrate fades
- As the states become occupied a Kondo resonance appears, providing direct proof of their magnetic nature

REFERENCES

[1] H. Zhang et al. J. Am. Chem. Soc. 137, 4022 (2015). [2] A. Kimouche et al. Nat. Commun. 6, 10177 (2015). [3] N. Kharche and V. Meunier. J. Phys. Chem. Lett. 7, 1526 (2016). [4] J. Lawrence*, P. Brandimarte* et al. ArXiv:1912.12094 (2019). [5] T. Cao et al. Phys. Rev. Lett. **119**, 076401 (2017).

ACKNOWLEDGEMENTS

